MCMC estimation for the p(2) network regression model with crossed random effects.
نویسندگان
چکیده
The p(2) model is a statistical model for the analysis of binary relational data with covariates, as occur in social network studies. It can be characterized as a multinomial regression model with crossed random effects that reflect actor heterogeneity and dependence between the ties from and to the same actor in the network. Three Markov chain Monte Carlo (MCMC) estimation methods for the p(2) model are presented to improve iterative generalized least squares (IGLS) estimation developed earlier, two of which use random walk proposals. The third method, an independence chain sampler, and one of the random walk algorithms use normal approximations of the binary network data to generate proposals in the MCMC algorithms. A large-scale simulation study compares MCMC estimates with IGLS estimates for networks with 20 and 40 actors. It was found that the IGLS estimates have a smaller variance but are severely biased, while the MCMC estimates have a larger variance with a small bias. For networks with 20 actors, mean squared errors are generally comparable or smaller for the IGLS estimates. For networks with 40 actors, mean squared errors are the smallest for the MCMC estimates. Coverage rates of confidence intervals are good for the MCMC estimates but not for the IGLS estimates.
منابع مشابه
Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models
The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...
متن کاملEstimation of genetic parameters for production traits and somatic cell score in Iranian Holstein dairy cattle using random regression model
In this study test-day records of milk (kg), fat (g), and protein (g) yields, somatic cell score (SCS, cells/ML) collected by Animal Breeding Center of Iran during 2007 and 2009 were used to estimate genetic parameters using random regression model. Models with different order of Legendre polynomials were compared using Bayesian information criterion (BIC).For milk, fat yield and SCS genetic an...
متن کاملRandom regression models for estimation of covariance functions of growth in Iranian Kurdi sheep
Body weight (BW) records (n=11,659) of 4961 Kurdi sheep from 215 sires and 2085 dams were used to estimate the additive genetic, direct and maternal permanent environmental effects on growth from 1 to 300 days of age. The data were collected from 1993 to 2015 at a breeding station in North Khorasan province; Iran. Genetic parameters for growth traits were estimated using random regression test-...
متن کاملEstimation of Genetic Trends for Test-Day Milk Yield by the Logarithmic Form of Wood Function Using a Random Regression Model
Estimation of genetic trends is necessary to monitor and evaluate selection programs. The objective of this study was to estimate the genetic trends for milk yield in Iranian Holsteins cows using random regression test day model. Data set was consisted of 743205 test-day records from 1991 to 2008, which were collected by the Animal Breeding Centre of Iran. Breeding, environmental and phenotypic...
متن کاملHeritabilities and Genetic Correlations for Egg Weight Traits in Iranian Fowl by Multi Trait and Random Regression Models
Objective: The main objective of this research was estimation of genetic parameters for five consecutive measurements of egg weights in Isfahan fowl using multi trait model and random regression models. Methods: The statistical models included generation-hatch as a fixed effect, weeks of age as a covariate and additive genetic and individual permanent environmental effects as random effects. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The British journal of mathematical and statistical psychology
دوره 62 Pt 1 شماره
صفحات -
تاریخ انتشار 2009